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Abstract: The effect of non-synchronous rotation of the component I l

" star in close binaries om its limiting surface is analyzed and th
difficulties in the previous investigations are examined. It has
been shown that no potential function exists in a coordinate system
following the axial (non-synchronous) rotation of the component '
star. Consequently, no equilibrium surfaces can be obtained in
this way. It is therefore suggested that we should retain the )
conventional coordinate system that rotates with.the binary motiomn. -
Since a simple energy integral exists in this coordinate system,
we can obtain a physical picture for the problem of the non-syn-
‘chronously rotating star in the binary systems. Indeed we have
found that the non-synchronously rotating star will modify its ro-
tation gradually and becone eventually synchronous with its orbital

" revolution.

In this multifarious activities and achievements that make
‘ him one of the greatest astronomers in the modern time, Professor
" Otto Struve has never forsaken the binary stars. After having spent.

':F} some years of successful researches in other fields of astronomy

now and then he always returned to this field of his early interest.
- Therefore, .few astronomers have observed spectroscopically as many
-binary stars as he has done. Fewer still have left such a distinct

‘7  mark as his in the history of double stars.

b In a close association and collaboration with him for a decade
during which I am proud to have received his confidence and learned
the proceés of his mental perceptions and responses as a result of

:'our daily afternoon meetings in cafes outside the North Gate of the

| Berkeley Campus of the University of California, I have always been




-

impressed by his open mindedness to new ideas, his enthusiasm

for and devotions to astronomy. Because of his open mindedness he
saw any problem in its multi-faceted angles, thus making him not
only an outstanding scientist but also a great leader. Because of
his enthusiasm, he enlisted many astronomers into the fields of his
interest. Our daily contact also induced me to become a novice in
the study of binary stars in the mid fifties: It is therefore

. befitting for me ten years later to write this article on binary
stars in this memorial volume as my attribute tc a great ieader as

well as a dear friend whom I have both respected and admired.
I. A Critical Review of the Previous Investigations

The shape of stellar surfaces in the close binary system has

, "been given as a first approximation by what has been predicted by

the Roche Model (e.g. Struve and Huaﬁg 1957). According to this

- f;model, the axial rotation of component stars and their orbital

revolution are synchronized. While the majorityibf‘plose binaries .

. indeed obey the rule of synchronization (Swings 1936, Struve 1950
" Plaut 1959) there are some exceptlons to which belongs ﬁLyrae -a -
- peculiar binary system that Professor Struve (1941, 1958) had a 11fe-f‘
llong interest. Therefore, in recent years attempts have been made to{

"Iy»predict the stellar surfaces, especially the limiting surface, when

'f}.function'L} in a coordinate system that rotates with the binary's

. the component star does not rotate in synchronization with its
. ,orbital revolution (Kopal 1956, Plavec 1958, Kruszewski 1963, and
.. -Limber 1963).

In the restricted three-body problem one can define a potentia1~f5

orbital motion (e.g., Moulton 1914). Also an energy integral can

": be obtained in the form that the sum of the potential energy and the

kinetic energy is constant. It is the existence of the energy

.integral in this form that enables us to predict the stellar surfaces'g"
"~ of cloée binaries because only- then the density and the pressure '
- should be constant on any equi-potential surface. Thus, we should

- emphasize that the mere existence of a potential function does not
"necessarily warrant a prediction of the equilibrium surface of a star.;

Indeed, this is the reason that the calculations by previous 1nves-

xﬁ_tigators have to ‘be. regarded as unsatisfactory.i,




Kopal (1956) first studied the limiting surface of the non-
synchronously rotating star, using a potential function which
Kruszewski (1963) has since pointed out to be incorrect. Later
Plavec (1958), Kruszewski (1963) and Limber (1963) have all derived
a potential function and cbtained the limiting surface. However, '
even though their potential function is correct, their result is
still open to debate because they have used for computing the
. limiting surface in one coordinate system a potential function
expressed in another coordinate system which has a relative motion
with respect to the first one. )

Let us first choose a dimensionless system of units of
measurement with the total mass of the binary as the unit of mass,
with the separation between the two components as the unit of
length and with P/m- as the unit of time, where . P stands for the
orbital period. Thus, if we denote 1 -/ﬁc as the mass of one
component, /u, will be the mass of the other. Let us further choose
a rotating (x,y,z) system such that the origin is at the center of
the 1 - /b component, the x-axis points always towards the /b
component, and the xy plane coincides with the orbital plane, We
have the equations of motion for a test particle in the (x,y,z)

system: | ‘
éz-zi%-.-?.y_" ﬂfzix-':_e_y;"{z}=3a'
att Tdt ax s dRF At ~ > ¥ At 7 .

where

r 3 |-
Vbggailopty ) 5=+ 4
- 4 ] et (2)
and ﬁ,, and ]lz are respectively the distances of the test particles -

from the two component stars. Note that 'Lﬂ is a function of time
only through the coordinates (x,y,z) of the test particle.
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We not introduce a new rotating (g, 7, G) system such that it

is rigidly fixed to the 1 -4 component, sharing the latter's axial
rotation. Although the axial rotation of the 1 - component is not
synchronous with the orbital motion, its rotating axis (chosen as
the g-axis) is still assumed to be perpendicular to the orbital
" plane. Thus, if the (?, )),;) system is rotating with an angular

velocity, ¢) , with respect to the (x,y,z) system, it rotates with
an angular velocity, 1 +@ , with respect to the rest frame of reference.
_’ The transformation equations between (x y,z) and \5, / ,> ) are aa
- follows:

?ww‘t-?amwf 3?““’“7“““’ T 5 ? @
,'rhe equat:l.ons of motion in the (5,7 9) system are L. _» ‘,
QU'.’- A : - (4)

25
“ +sz+9——5 / Mf-—- L

== | o (8)

. where

UG5 =4l GE e
(D
'-may be regardej____ }as the negative value of the potential function.
' Actually, it is a misleading name as we shall see presently.
U (?, 7] 6) as given by equation (7) has been used by Plavec
to evaluate theflimiting surface of the non-synchronous 1 - /u component.
We can now see that such an evaluation may not be regarded as
satisfactory. In the first place, we encounter the time-dependent

terms/u cr wl and /L(,,uw wt in equations (4) and (5). -
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Secondly /%L , ¥hich is given by
2 | z . z L
n. =(§-ww'f)+l7+/w~w'f) ' ®

is now an explicit function of time. Therefore U2 (?: 7,5; ),

unlike U1 in the (x,y,z) system, is no longer an implicit function

of time through, the space.coordinates alone but involves time
m-ew;ﬁ'zwewuﬁ. R

explicitly. o Becausé of the two compig¥§€@§2é, we can no longer derive
'; from equations {(4)-{(8) the simple~_;é§glﬁ ~that the sum of the
‘potential energy and the kinetic emergy is a constant of motion..
Consequently, the surfaces defined by equation (7) do not represent
equilibrium surfaces of the star. We can see this point analytically
in the following way.

Multiplying equations (4)-(6) respectively by d§7dt, dn/dt and
d§7dt and adding the resulting equations together, we obtain after
integration with respect to time that

3 [V‘(H-V’H.)J -[U.th-U.h)] @

e Ay, o 43 U,
- _"’ - ) - -} s
..J [/a(d_t/amw'f drcovw‘f 57 4T,
t
where V (t) and V (t, ) denote respectively the velocity of the test
particle at time t and at the initial time t, . dUi/jf may be
'evaluated from equations (7) and (8). When the result is substituted .
‘into equation (9), we obtain finally
V- V) - [ u)- U] i

at p

It is obvious from equation (10) that the sum of the potential
~and kiﬁetic energy is no longer constant. Since the integral in :
equation (10) actually depends upon the path of the test particle,‘-[4;;
does not behave exactly like a potential. Thus, it is questionable '
~ whether IJ; as~given by equation (7) can predict the equilibrium
surfaces or the limiting surface of the star whose rotation is non-
‘synchronous to the orbital motion. The reason that the limiting

[yt Zemet ]t
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surface has been derived in this way is perhaps due to the fact
that the names of potential is often given to -T)C . If we avoid
to use the name potential and consider only the zero-velocity
surfaces, no ambiguity will arise because equation (9) clearly shows
that zero-velocity surfaces do not exist in the ( g 7 5 )
coordinate system.

Both Limber (1963) and Kruszewski (1963) treated the problem
rigorously by considering the equations of motion. They have intro-
duced

UG 19) UG 5) et =00l o

In doing so, they can replace the right hand sides of equations
(4)-(6) respectively by 30‘3/2’5 QU', 37 , and at;)/?f .
' Because of the transformation relat:.on (3), U (%, /9) can now
be expressed in terms of x, y and z. In this new expression for U,,
time appears only implicitly through x,y,z but does not enter
explicitly. Consequently, they have independently derived the limiting
surface in the (x,y,z) system by considering U; as the potential ’
function. A
However, we should remember that it is the (? ! 7,; ) system
that is rigidly fixed to the rotating star. Any stationary surface
of the non-synchronous rotating star (1 -/AL component) must be
expressed as a function of ; and 5 alone without
the explicit appearance of time. It does not appear that an ex-
pression in x, y, and z can represent the stationary surfaces of the
non-Synchronous component because in the (x,y,z) system the component
has a net rotation. Sihce, as we have seen before, we cannot obtain
a potential function in the (g, 7, S ) system, we have no means to
compute the stationary surfaces of a non-synchronous rotating
component star, a conclusion contrary to the previous investigators.

II. Physical Interpretation

Because of the difficulties we have just observed, it is.
advisable to retain the (x,y z) oourdmate' sys?_em that rotates with
the binary motion. /

I
~ In this coordinate system‘we have
/



for the test particle a simple energy integral
2
2‘U,~V=C (12)

where '[E(x,y,z) is given by equation (2).

We should now recall that the zero-velocity surfaces are
labelled by C (e.g., Moulton 1914). Let the C value that is
associated with the innermost contact surface S (Kuiper 1941) be

C Therefore, all particles inside the S1 surface with C < C,/",gd"allv

Ciuld penetrate the S1 surface. As a result, these particles w;iii ------ .
be: lost from the star L. S S R ‘

- o A [rﬁgé the 1 - component is rotating with an
angular velocity @ in the x,y,z coordinate system along the

z-axis. Particles in the stellar surface layers have velocities
{
. tﬁ.
V= ety )@ (13)

if thermal motion or other kinds of motion are neglected. Hence,
all particles in the 1 - component star that are above the surface

(called the R surface hereafter) given by
2, % L
ZU(X,3,§)~<4)(X»*2)= C, 10

and consequently have C values less than Cl_may be regarded as
unstable and could easily escape out of the Sl surface. Figure 1
illustrates the cross sections in both the xy plane and the xz
plane of a few R surfaces for the case . =0.4 andw = 0, 2, 4 and
8. The case &@ = 0 is simply the S sur[::e for /a.= 0.4. The
elongated shape of the cross sections in the xz plane is easy to
understand because those particles near the equatorial plane that
have .the highest linear velocities due to non-synchronous rotation are
the easiest to be ejected out. of the S1 surface.

However, it should be noted that the R surfaces represent neither
~ limiting nor equilibrium surface. Particles below the R surface for
a given value of @ can move .up although they cannot escape
through the S1 surface without collisions. Statistically, we can
state that most particles that are originally located above the R
surface are lost and are replaced by particles coming from below the
R surface. These new particles will naturally fill up the entire
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lobe of the S1 surface. Therefore, the limiting surface of the
1 - /%'component is still given by the S1 surface. Since the
angular momentum per unit mass due to the axial rotation of the
1 - AL component decreases downward in the star if it rotates as
a rigid body, the new material above the R surface will rotate less
rapidly (with respect to the xyz system) than the old material before
the latter's escape. The simultaneous transfer of mass from below
the R surface to above the R surface and from inside the S1 surface
to outside ihe S1 surface will continue until the orbital revolution
and the axial rotation become synchronized. Perhaps this is one of
the most effective mechanisms for synchronizing orbital revolution
and axial rotation of close binary stars. Therefore, non-synchroniza-
tion observed in those close binaries must be a temporary phenomenon
~triggered by rapid evolution of the component star itself as is y
suggested by Kopal (1959). But even at the time the two kinds of
motion are temproarily out of step, the shape of the component is
still given by the S1 surface according to the present analysis.
Finally, one may question our argument on the ground that
it has not proven that the particles are necessarily flying away
from the star. If all particles on some surface of a non-synchronously
rotating star should tend to move inward, this surface could be
regarded as é‘stable surface for the star. This is however not true
because when the particles move inward they collide with other
particles. Since the average C value (the C value of each particle
being defined by Eq. [12]) of all particies participating in a
collision remains constant (Huang 1965) and since directions of the
velocities will be modified after the collision, the chance of escape
from the surface increases with time whatever are the directions of
their initial velocities (in the Xyz system). Therefore, our
conclusion about the non-synchronously rotating star is valid without
.qualificafion for the Roche model.
It is my pleasure to note my thanks to Mr. Clarence Wade, Jr.
who has performed the computaﬁion involved in obtaining diagrams in

Figure 1.
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4 LEGEND

Figure 1 - The R surfaces for different values of w

(o, 2, 4, 8) for /u. = 0.4. The R
surfaces are defined by equation (14).
The case W = o represents simply the
innermost contact surface (denoted by Sl).

N When the rotation of a component star is
not synchronous with its orbital motion,
the gaseous particles above the R surface
may escape the Sl surface and are re-~
placed by gaseous particles moving out from
below the R surface. This process will .go
on until the star finally becomes synchron-

 ized to its_orbital‘motion.

- 10 -




